# organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Özlem Deveci,<sup>a</sup>\* Şamil Işık,<sup>a</sup> Nesuhi Akdemir,<sup>b</sup> Cihan Kantar<sup>b</sup> and Erbil Ağar<sup>b</sup>

<sup>a</sup>Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, and <sup>b</sup>Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Samsun, Turkey

Correspondence e-mail: odeveci@omu.edu.tr

#### **Key indicators**

Single-crystal X-ray study T = 298 KMean  $\sigma$ (C–C) = 0.004 Å R factor = 0.046 wR factor = 0.141 Data-to-parameter ratio = 14.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# 1,3,5-Tris(2-isopropylphenoxymethyl)benzene

The title compound,  $C_{36}H_{42}O_3$ , consists of three 2-isopropylphenoxymethyl groups bonded to the central benzene ring at the 1-, 3- and 5-positions. Intramolecular  $C-H\cdots O$  hydrogen bonds seem to have an effect on the molecular conformation. Received 31 March 2005 Accepted 5 May 2005 Online 14 May 2005

## Comment

The title compound, (I), contains three phenoxymethyl groups which can increase oral absorption. Phenoxymethyl has also been added to penicillin to increase its absorption in oral medicine (Ito *et al.*, 2000; Miko *et al.*, 2004).



The title molecule, (I), is a phenyl ether derivative, which was synthesized by treating 2-isopropylphenol with 1,3,5-tris(bromomethyl)benzene in dimethylformamide using  $K_2CO_3$  as the base. Since phenyl ethers have been used as antimicrobial agents and hygeine products, they are incorporated into many types of cosmetic formulations (Russell, 2004; Parfitt, 1999).

Some tetra-, tri- and disubstituted methylbenzene derivatives are used for the syntheses of polymers and dentritic molecules (Newkome *et al.*, 1996). In recent years, these polymers have attracted great interest due to their unique properties and important applications (Kuriyama & Otsu, 1984; Kwon *et al.*, 2003).

The intramolecular C–H···O hydrogen bonds (Table 2) seem to be effective on the molecular conformation (Fig. 1). The dihedral angles between rings *A* (C1–C6), *B* (C10–C15), *C* (C19–C24) and *D* (C28–C33) are *A*/*B* 10.7 (7)°, *A*/*C* 66.6 (7)° and *A*/*D* 2.8 (6)°.

## **Experimental**

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved 2-Isopropylphenol (1.20 g, 8.81 mmol) and  $K_2 CO_3$  (1.50 g, 10.87 mmol) in dry dimethylformamide (40 ml) were heated and

stirred at 313 K, under a nitrogen atmosphere for 1 h. To this mixture, a solution of 1,3,5-tris(bromomethyl)benzene (1.00 g, 2.80 mmol) in dry dimethylformamide (40 ml) was added dropwise, under a nitrogen atmosphere over a period of 2–3 h. The reaction mixture was stirred for 2 d at 313 K and then poured into ice–water (150 g). The product was filtered off and washed with (10% w/m) NaOH solution and water. Recrystallization from ethanol solution gave a white product (yield 0.38 g, 26%, m.p. 333 K). Single crystals were obtained from absolute ethanol at room temperature by slow evaporation. Elemental analysis calculated: C 82.72, H 8.10%; found: C 82.62, H 8.14%.

Z = 2

 $D_x = 1.119 \text{ Mg m}^{-3}$ Mo  $K\alpha$  radiation Cell parameters from 17053

 $0.71 \times 0.34 \times 0.14 \text{ mm}$ 

6830 independent reflections 2985 reflections with  $I > 2\sigma(I)$ 

 $w = 1/[\sigma^2(F_o^2) + (0.076P)^2]$ 

where  $P = (F_0^2 + 2F_c^2)/3$ 

-3

Extinction correction: SHELXL97

Extinction coefficient: 0.010 (2)

reflections  $\theta = 1.4-27.1^{\circ}$   $\mu = 0.07 \text{ mm}^{-1}$  T = 298 (2) KPrism. colorless

 $R_{\rm int} = 0.050$ 

 $\begin{array}{l} \theta_{\rm max} = 27.2^{\circ} \\ h = -10 \rightarrow 11 \end{array}$ 

 $k = -14 \rightarrow 14$ 

 $l = -20 \rightarrow 20$ 

 $(\Delta/\sigma)_{\rm max} = 0.001$ 

 $\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}$ 

 $\Delta \rho_{\rm min} = -0.15 \text{ e} \text{ Å}^{-3}$ 

#### Crystal data

| $C_{36}H_{42}O_3$                |
|----------------------------------|
| $M_r = 522.70$                   |
| Triclinic, P1                    |
| a = 9.3172(7)  Å                 |
| b = 11.5055 (9) Å                |
| c = 16.3424 (13) Å               |
| $\alpha = 104.677 \ (6)^{\circ}$ |
| $\beta = 105.307 \ (6)^{\circ}$  |
| $\gamma = 103.098~(6)^{\circ}$   |
| $V = 1551.6 (2) \text{ Å}^3$     |
|                                  |

#### Data collection

Stoe IPDS-II diffractometer  $\varphi$  and  $\omega$  scans Absorption correction: by integration (*X*-*RED32*; Stoe amp; Cie, 2002)  $T_{min} = 0.970, T_{max} = 0.992$ 21653 measured reflections

### Refinement

Refinement on  $F^2$   $R[F^2 > 2\sigma(F^2)] = 0.046$   $wR(F^2) = 0.141$  S = 0.856830 reflections 461 parameters H atoms treated by a mixture of independent and constrained refinement

#### Table 1

Selected geometric parameters (Å, °).

| C7-O1                        | 1.420 (2)                   | C10-O1       | 1.3783 (19)  |
|------------------------------|-----------------------------|--------------|--------------|
| C8-O2                        | 1.416 (2)                   | C19-O2       | 1.372 (2)    |
| C9-O3                        | 1.424 (2)                   | C28-O3       | 1.367 (2)    |
| C10-O1-C7                    | 117,57 (14)                 | C28-O3-C9    | 119.07 (15)  |
| C19-O2-C8                    | 117.42 (14)                 |              |              |
| C1-C7-O1-C10<br>C3-C8-O2-C19 | 177.07 (16)<br>-172.44 (16) | C5-C9-O3-C28 | -179.86 (15) |

| Table | e 2 |
|-------|-----|
|-------|-----|

| Tryurogen-bonung geometry (A, |
|-------------------------------|
|-------------------------------|

| $D - H \cdots A$                                                      | D-H        | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------------------------------------------------|------------|--------------|--------------|--------------------------------------|
| $\begin{array}{c} C2 - H2 \cdots O2 \\ C4 - H4 \cdots O3 \end{array}$ | 0.929 (18) | 2.379 (17)   | 2.756 (2)    | 104.1 (13)                           |
|                                                                       | 0.942 (18) | 2.305 (17)   | 2.695 (2)    | 104.2 (12)                           |





An *ORTEP-3* (Farrugia, 1997) drawing of the title molecule, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and dashed lines indicate hydrogen bonds.

Methyl H atoms, except for those on atom C17, were positioned geometrically at a distance of 0.96 Å from the parent C atoms; a riding model was used during the refinement process and  $U_{\rm iso}({\rm H})$  values were constrained to be  $1.5U_{\rm eq}$ (carrier atom). The other H atoms were located in a difference synthesis and refined freely [CH C-H = 0.93 (2)–1.04 (2) Å, CH<sub>2</sub> C-H = 0.97 (2)–1.03 (2) Å and  $U_{\rm iso}({\rm H}) = 0.065 (5)–0.159 (11) Å^2$ ].

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

#### References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Ito, Y., Ikai, Y., Oka, H., Matsumoto, H., Kagami, T. & Takeba, K. (2000). J. Chromatogr. A, 880, 85–91.
- Kuriyama, A. & Otsu, T. (1984). Polym. J. 16, 511-514.
- Kwon, T. S., Takagi, K., Kunisada, H. & Yuki, Y. (2003). Eur. Polym. J. 39, 1437–1441.
- Miko, T., Ligneau, X., Pertz, H. H., Arrang, J.-M., Ganellin, C. R., Schwartz, J.-C., Schunack, W. & Stark, H. (2004). *Bioorg. Med. Chem.* 12, 2727–2736.

Newkome, G. R., Moorefield, C. N. & Vögtle, F. (1996). Dentritic Molecules. Concepts. Synthesis. Perspectives. New York: VCH Publishers Inc.

Parfitt, K. (1999). In *Martindale, The Complete Drug Reference*, p. 1127. London: Pharmaceutical Press.

- Russell, A. D. (2004). J. Antimicrob. Chemother. 53, 693-695.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.